
Mueller matrix dual-rotating retarder polarimeter

Dennis H. Goldstein

A computer-controlled Mueller matrix polarimeter with dual rotating retarders is described. Bulk
properties of optical materials are determined by controlling the input-polarization state and measuring
the output-polarization state. The Mueller matrix of a sample is obtained from polarimetric measure-
ments, and polarization properties, i.e., diattenuation and retardance as well as depolarization, are
extracted from the Mueller matrix. Further, fundamental electro- and magneto-optical material
properties such as the electro-optical tensor coefficients may be obtained from Mueller matrices measured
with applied fields. The polarimeter is currently configured to operate over the 3- to 12-[Lm spectral
region.
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1. Introduction
Polarimetry is an experimental technique for measur-
ing the polarization state of a light beam and for
deducing the polarizing properties of bulk materials
in transmission. (Azzam and Bashara refer to this
as "transmission ellipsometry" in their treatise on
ellipsometry.1) A polarimeter is an optical instru-
ment used for the determination of the polarization
state of a light beam.

Polarimeters are commonly used to measure spe-
cific optical properties of media in diverse applica-
tions.2-9 The most general information that can be
obtained from a polarimeter is the Mueller matrix, a
4 x 4 real matrix that contains all information con-
cerning the polarization properties of a medium
except the overall phase. (Overall phase informa-
tion, as measured in interferometry, is lost in Mueller
matrix polarimetry. Relative phase information be-
tween polarization states, or retardance, is deter-
mined.)

I have constructed a Mueller matrix polarimeter
based on an ellipsometric method proposed by Az-
zam.10 My purpose in constructing and operating
this instrument is to determine properties such as
retardance, diattenuation, and depolarization of lin-
ear or nonlinear electro- and magneto-optic materials
in the infrared region of the spectrum. The polarim-
eter radiation source is currently a tunable CO 2 laser.
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2. Infrared Mueller Matrix Rotating-Retarder
Polarimeter

The infrared laser polarimeter described here is
designed for operation with any laser source in the 3-
to 12-pm spectral region. This spectral region is of
great interest for the evaluation of materials used as
elements of optical-processing systems, laser-modula-
tion systems, or thermal-imaging systems. The polar-
imeter design is readily adapted for operation in other
wavelength regions with different sources, detectors,
and elements.

This polarimeter configuration is based on'designs
described by Azzam10 and by Hauge.11 The tech-
nique has been used with the sample in reflection to
measure birefringence in the human eye at visible
wavelengths. 12-14 Mueller matrix elements and
Stokes vectors are used to represent the polarization
elements and polarized light, respectively. The Muel-
ler matrix formulation is used over the Jones for-
mulation because it is preferable for experimental
research where scattering and depolarization mea-
surements are made routinely.

Figure 1 shows a functional block diagram of the
polarimeter. The polarimeter has five sections:
the laser source, the polarizing optics, the sample, the
analyzing optics, and the detector.

The polarizing optics consist of a fixed linear polar-
izer and a quarter-wave plate that rotates. The
sample region is followed by the analyzing optics,
which consist of a quarter-wave plate that rotates
followed by a fixed linear polarizer. One of the great
advantages of this configuration is that the polariza-
tion sensitivity of the detector is not important
because the orientation of the final polarizer is fixed.
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Fig. 1. Polarimeter block diagram. The Mueller matrix of the
sample is determined from the modulated intensity measured by
the detector.

The two wave plates are rotated at different but
harmonic rates, and a modulation of the detected
intensity results. The Mueller matrix of the sample
is found through a relationship between the Fourier
coefficients of a series representing the modulation
and the elements of the sample matrix.

Figure 2 shows a diagram of the instrument in its
actual implementation. The source beam is chopped
at 1 kHz because the detector electronics require a
modulated signal. A beam splitter diverts a fraction
of the beam to monitor the laser output power. The
main beam passes through the polarimeter elements,
the sample, and on to the detector. A preamplifier
provides a bias voltage to the detector and an output
voltage for a multimeter. The detector is used in its
linear region.

The polarizer P2 is an infrared wire grid polarizer.
The polarization of the laser, which is linearly polar-
ized, provides the initial polarization of the beam so
that no linear polarizer is needed before the sample.
All other polarization elements are aligned relative to
the laser polarization. This dual-rotating retarder-
polarimeter technique requires a rotating linear re-
tarder on both sides of the sample to modulate the
various Mueller matrix elements onto intensity varia-
tions in separate modulation frequencies. The re-
tarders R1 and R2 used with the CO2 laser are
cadmium sulfide zero-order wave plates, giving nomi-
nally a 900 phase shift between orthogonal polariza-
tion states at 10.6 pm. (Wave plates with almost
any retardation values may be used; however, the
intensity modulation that results with quarter-wave
plates contains null points, i.e., there is greater

D

Fig. 2. Polarimeter optics diagram: LA, laser; D, detector; PZ,
polarizer; R1, R2, retarders; S, sample; CH, chopper; IS, integrat-
ing sphere; B, beam splitter; C, computer; RSC, rotary stage
controller; DM, digital multimeter.

modulation.) Actual values of the retardance (sup-
plied by the manufacturer) for the retarders used
here were slightly different from 90°. The compensa-
tion for nonideal wave plates is discussed later and is
one of the unique features of this instrument.

The final elements in the sample measurement leg
are a small infrared integrating sphere Ahd a HgCdTe
photoconductive detector with a low-noise preampli-
fier. The photoconductive detector preamplifier is
powered by a dc power supply. The integrating
sphere serves as the radiation collector. HgCdTe
detectors are currently not available in large sizes
(>4 mm on a side). To collect all radiation in a
larger beam, or to eliminate a beam wander caused by
deviation of the beam from a rotating element with
nonparallel faces, one must have a larger detector
area. This larger area is effectively obtained by
using the integrating sphere as a collector. A small
infrared integrating sphere of 5.08 cm diameter has a
collecting aperture of 1.27 cm. A HgCdTe detector is
then placed in the detector port of the integrating
sphere.

All three polarizing elements are held in motorized
rotary stages connected to a programmable stage
controller. The controller is in turn connected to a
computer by means of an IEEE-488 bus. The rotary
stages are driven with dc motors and have optical
encoders with resolution control to .001°.

The detector preamplifier outputs are connected to
digital multimeters, which are in turn connected to
the computer by means of the IEEE -488 bus. The
central computer controls the orientation of the
polarizing elements and monitors the data arriving
from the detectors. Data are displayed on the com-
puter screen or output to a printer and plotter. All
the software necessary for calibration procedures,
data acquisition, and preliminary processing is stored
on this computer.

The computer is programmed in BASIC to rotate the
wave plates and query the multimeters. The second
wave plate is rotated five times the rate of the first,
and data are typically collected for every 2 to 6° of
rotation of the first wave plate. The stages are
stopped completely after each incremental rotation,
and an intensity reading is recorded. The resulting
data set is a modulated waveform, which is then
processed according to the algorithms in Section 3.

The three polarizing elements in the polarimeter
are required to be aligned with respect to the laser-
polarization axis orientation to within a small angle
(of the order of 0.10). Thegprincipal objective of the
polarimeter calibration is to orient the linear polar-
izer so that its axis is parallel with the laser-
polarization axis and then to orient the retarders so
that their fast axes are parallel with each other and
parallel with the polarizer axis. This process is the
subject of considerable effort, and the elimination of
the remaining errors form a substantial part of this
research, as summarized in Section 4.
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3. Mathematical Development: Obtaining the Mueller
Matrix
This polarimeter measures a chopped signal, which is
modulated by rotating the polarizing optical elements.
The elements of the Mueller matrix are encoded on
the modulated signal. The output signal is then
Fourier analyzed to determine the Mueller matrix
elements. The implementation described here uses
two aligned and fixed linear polarizers and two rotat-
ing quarter-wave retarders as shown in Fig. 3. The
second retarder is rotated at a rate of five times that
of the first. This generates twelve harmonic frequen-
cies in the Fourier spectrum of the modulated intensity.

The following treatment through Eq. (9) is based
on a derivation by Azzam.10 The Mueller matrix for
the system is

P2 R2 (0)MR(0)P 1, (1)

where P indicates a linear polarizer, R(0) indicates an
orientation-dependent linear retarder, and M is the
sample and is the matrix quantity to be determined.
Mueller matrices are then substituted for a linear
retarder with quarter-wave retardation and a fast
axis at 0 and 50 for R, and R2, respectively; a
horizontal linear polarizer for P2; a horizontal linear
polarizer for P1 (in practice, the need for this polarizer is
eliminated because a highly polarized laser is used as the
source); and a sample for M. The Mueller matrices for
the optical elements are tabulated in various references
as functions of retardation and orientation angles.' 5' 16

The detected intensity is given by

I = cAMP, (2)

where P = RjPjS is the Stokes vector of light leaving
the polarizing optics (S is the Stokes vector of the light
from the source), A = P2R% is the Mueller matrix of the
analyzing optics, M is the Mueller matrix of the sample,
and c is a proportionality constant obtained from the
absolute intensity. Explicitly,

4

I = c aipjmij,
i,j=l

(3)

0 50

Cl &
P1 RI S R2 P2

Fig. 3. Polarizing elements and rotation rates. A laser source L
is directed through fixed polarizers P1 and P2, rotating retarders
R1 and R2, and the sample S, to a detector.

or
4

I = c E>jmij
i,J=1

(4)

where the ai are the elements of the first row of A, the
pj are the elements of P, the mij are the elements of
the Mueller matrix M, and where

Wij = aipj. (5)

The order of matrix multiplication can be changed
as shown above in going from Eq. (2) to Eq. (3)
because we are only measuring the intensity, i.e., the
first element of the Stokes vector. Only the first row
of the matrix A is involved in the calculation:

a, a2 a3 a4 M1 1 M12

. M2 1 M2 2

. M31 M3 2

. M41 M4 2

M13 M14 Pi I

M2 3 M2 4 P2

M3 3 M3 4 p3

M4 3 M4 4 . P4 .

(6)

and multiplying through

I= al(mllp1 + m12 p2 + m13 p3 + m14 p4 )

+ a 2(m21 pI + m2 2p2 + m2 3p3 + m2 4p4)

+ a 3(m3 0p 1 + m3 2P2 + m3 3p3 + m3 4p4)

+ a 4(m41 p1 + m4 2P2 + m4 3p3 + m4 4p4)

4

=, 1imij-
i,j=1

When the rotation ratio is 5:1 the tLj are given by

Ipli= 1,

P12 = cos 2 20,

P13 = sin 20 cos 20,

PL14 = sin 20,

P21 = COs2 100,

P,22 = COS 2 20 cos2 100,

1.23 = sin 20 cos 20 cos2 100,

P124 = sin 20 cos2 100,

J31 = sin 100 cos 100,

I-32= COS2 20 sin 100 cos 100,
33= sin 20 cos 20 sin 100 cos 100,

34= sin 20 sin 100 cos 100,

N41 = -sin 100,

P.42 = -COS 2 20 sin 100,

J143 = -sin 20 cos 20 sin 100,

,44 = -sin 20 sin 100.

(7)
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These equations can be expanded in a Fourier series
to yield the Fourier coefficients, which are functions
of the Mueller matrix elements.

The inversion of these relations gives the Mueller
matrix elements in terms of the Fourier coefficients:

ml = ao - a2 + a8 - a1o + a12 ,

M1 2 = 2a 2 - 2a 8 - 2al2,

M1 3 = 2b 2 + 2b 8 - 2bl2,

M14 = b - 2b1l = b1 + 2bg = b, + bg - bl,

M21 = -2a8 + 2al 0 -2al2,

M2 2 = 4a 8 + 4al2 ,

M2 3 = -4b8 + 4bl 2 ,

M2 4 = -4bg = 4bll = 2(-bg + b1l),

M31 = -2b 8 + 2blo - 2bl2,

M3 2 = 4b8 + 4bl 2,

M3 3 = 4a 8 - 4al2,

M3 4 = 4a9 = -4all = 2(a9 - all),

M41 = 2b 3 - b5 = -b 5 + 2b7 = (b3 - b5 + b7),

m4 2 = -4b3 = -4b 7 = -2(b 3 + b7),

M4 3 = -4a3 = 4a7 = 2(-a 3 + a7 ),

M4 4 = -2a4 = 2a 6 = (a6 - a4 ). (9)

The 5:1 rotation ratio is not the only ratio that can be
used to determine Mueller matrix elements, but it is
the lowest ratio in which the expressions for the
Fourier coefficients may be inverted to give the
Mueller matrix elements.

Intensity values in the form of voltages are mea-
sured as the retarders are incrementally advanced
such that the first retarder rotates through 1800.
The Fourier coefficients must be obtained from the
measured intensity values. There are several meth-
ods of formulating the solution to this problem.

If the problem is formulated as

xa = I, (10)

where I is a vector of 36 intensity values, a is the set of
25 Fourier coefficients, and x is a 36 x 25 matrix
where each row is of the form

(1 cos 20 cos 40 ... cos 240 sin 20 sin 40 ... sin 240)

where the 0 for each row represents the angle of the
fast axis of the first retarder, then the solution is

a = (xTx)lxTI. (11)

(The minimum number of equations needed to solve
for the coefficients uniquely is 25 so that the maxi-
mum rotational increment for the first retarder is
7.20; for this example, 36 equations are obtained from
50 rotational increments through 180°.) This solu-

tion is equivalent to the least-squares solution.17

In the least-squares formulation the expression for
the instrument response is

12

I(0) = a + I (a; cos 2j0 + bj sin 2jO), (12)
J=l

but the actual measurement tD(0) may be different
than this value. The sum of the square of these
differences may be formed, i.e.,

35

I [(0 1) - I(01)]2 = E(ao, a1, . . ., a12 , bl, . . ., b2),
1=0

(13)

where E is a function of the coefficients and 1 is the
subscript of the retarder angle. The values of the
coefficients can now be found by taking the partial
derivative of E with respect to the coefficients and
setting these equal to zero:

aE

Sak -

aE
Sb4 = 0. (14)

The expression becomes, for the derivative with
respect to a1,

35 - 12 

I {F(0I) - ao + 12 (aj cos 2j01 + bj sin 2jol

x (-2 cos 2k01) = 0. (15)

Solving this system of 36 equations in 25 unknowns
will give the least-squares solution for the coeffi-
cients, which is identical to the solution obtained
from Eq. (11).

4. Error Compensation
The true nature of the sample may be obscured by
errors inherent in the polarimeter optical system.
The Mueller matrix elements must be compensated
for the known errors in retardance of the retarders
and the errors caused by the inability to align the
polarizing elements precisely. The fact that there
are errors that cannot be eliminated through optical
means led to an error analysis and a compensation
procedure to be implemented during polarimeter data
processing.

A summary of an error analysis of a dual-rotating
retarder Mueller matrix polarimeter is presented in
this section. The derivation of the compensated
Mueller matrix elements using the small-angle approx-
imation is documented in detail in Goldstein and
Chipman.18 Errors in orientational alignment are
considered. Errors caused by nonideal retardation
elements are also included in the analysis. A compen-
sation for imperfect retardation elements is then
made possible with the equations derived, and the
equations permit a calibration of the polarimeter for
the azimuthal alignment of the polarization elements.
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A similar analysis was done by Haugell for a dual-
rotating compensator ellipsometer, but this analysis
did not include error in the last polarizer and did
include errors caused by diattenuation in the retarda-
tion elements. Experimental experience with the
polarimeter described here indicates that the devia-
tion of the retarders from the quarter wave is impor-
tant compared with the diattenuation of the retard-
ers.

In the error analysis, the effect of retardation
associated with the polarizers and polarization associ-
ated with the retarders have not been included. It is
also assumed that there are no angular errors associ-
ated with the stages that rotate the elements. It is
only the relative orientations of the polarizers and
retarders that are relevant, and the analysis is simpli-
fied by measuring all angles relative to the angle of
the laser polarization. The three polarization ele-
ments have errors associated with their initial azi-
muthal alignment with respect to the laser polariza-
tion. In addition, one or both retarders may have
retardances that differ from a quarter wave. In
general, both retarders will have different retar-
dances and the three polarization elements will be
slightly misaligned in azimuth. Figure 4 illustrates
these errors.

Exact expressions for compensated Fourier coeffi-
cients are derived in Ref. 18. Because the error
angles are typically small, the Fourier coefficients can
be expressed by using small-angle approximations.
The expressions for the Fourier coefficients given
below in Eq. (16) reflect this small-angle approxima-
tion.

The following calibration procedure is used. First,
the polarimeter is operated with no sample and
Fourier coefficients obtained from the measured mod-
ulated intensity. Second, using error-compensation
equations with matrix elements of the identity matrix
inserted for the Mueller matrix elements, I calculate
the errors in the element orientations and retardances.
Third, in the routine use of the polarimeter, the
systematic errors in the Fourier coefficients arising
from the imperfections are compensated for by using
the error-compensated equations with experimen-
tally determined error values to obtain the error-

8 =9P+C

P 1f

Ri1 L
S

R2

P2
Fig. 4. Retardation errors E and e2, and orientation errors E3, E4,

and E5: P1, P2, fixed polarizers; R1, R2, rotating retarders; S,
sample; f, fast axis.

compensated sample Mueller matrix elements as a
function of measured Fourier coefficients.

With no sample in the polarimeter, the sample
matrix is the identity matrix. Because all off-
diagonal elements in the sample Mueller matrix are
zero, all odd Fourier coefficients in Eq. (12) become
zero. Because the diagonal elements equal one, the
coefficients of the twelfth harmonic vanish also.
The fourth and sixth Fourier cosine coefficients are
useless for determining errors because they are not
functions of the error. The Fourier coefficients ao,
a2, a8 a, b2, b4, b6, b8, and blo are functions of the
errors as follows:

1 (1 - l)(l - 2 )
ao = - +

4 16

(1 + El)(1 - 2 ) (1 + el)(l - E2)E3 E5
a 2 = 16 2

a8 =

a10 =

(1 + el)(1 + 2)

16

(1 - el)(1 + 2)

16

(1 + El)(l -E2)E3

"-1 4

(e4 - E3- E5 )
b4 = 

4

(e5 - E3-E4)
b6=

b8 =

+ (1 + El)(l -2)E5

+8

(1 + l)(1 + 2 )(2 e4 - 2E3- e5 )

8

(1 - El)(l + E2)(2 E4 - E5)

J.U 8

These equations can be inverted to solve for
errors in terms of the Fourier coefficients.
equations for ao and a1 0 yield

E = 3 - 8(ao + a1 o),
4(ao - a1 0 ) - 1

2 1 - 4(ao - alo)

(16)

the
The

(17)

The equations for a 8 and a1 0 also yield E1 and 2 :

__ (a 8 - a1 0 )
(a 8 - a1 0)

E2 = 8(a 8 + a10 ) - 1.

The addition of the equations for b4 and b6 gives

E3 = -2(b 4 + b6).

The equation for b2 can now be used to obtain

8b2
65 (1+ (1 - 2) 3'

(18)

(19)

(20)
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and finally taking the difference between b4 and b6
results in

E4 = 5 + 2(b4 - b6)- (21)

These values for the errors are now to be substituted
back into the equations for the Mueller matrix ele-
ments given in Eq. (11) of Goldstein and Chipman 18

by using measured values of the Fourier coefficients.

5. Optical Properties from the Mueller Matrix

One objective of this study is to obtain electro- and
magneto-optic coefficients of crystals. The coeffi-
cients are derived from Mueller matrices measured as
a function of applied field strength. The method by
which this derivation is accomplished is described in
Goldstein et al.19 and is briefly summarized here.

The application of an electric field across a crystal
produces an index change. Principal indices are
obtained by solving an eigenvalue problem. For
example, for a 43m cubic material with index no and
with a field E perpendicular to the (110) plane, the
index ellipsoid is

field and propagation direction are both along the z
axis. The refractive indices experienced by the light
are in the plane containing the x and y principal axes.
If the light polarization and crystal are aligned so that
the polarization is 45° from either principal axis, the
phase retardation will be

F = 27r(ny' - n.')L/X, (25)

where ni', n' are the (new) principal indices with the
field applied. (For crystals with natural birefrin-
gence and with no electric field, these indices may just
be the principal indices.)

The phase delays for light polarized at 45° to the
principal axes of the 43m material can now be calcu-
lated. The phase retardation for 43m cubic material
is

cubi = 2irno3r4 lELIX. (26)

If the electric field is expressed in terms of electric
potential and charge separation, i.e., E = Vid, then
the phase retardation is

(22)

The eigenvalue problem is solved, and the roots of the
secular equation are the new principal indices:

n ' = no + l/2n, 3r41 E,

ny, = no -l/ 2 no3 r4 lE,

n,' = no. (23)

The principal indices of the 43m cubic material for an
electric field applied transversely and longitudinally
are given by Namba.20

rcubic
1 = 27rn 

3
r4 1 V/ X, (27)

because the charge separation d is equal to the optical
path through the crystal L.

The phase retardation for 43m cubic material in
the transverse mode is also given by Eq. (26). In the
transverse mode the charge separation is not the
same as the optical path so that when E is given as
Vid, the phase delay is given as

p trans 3'cubc 2no r VL/dk. (28)

The cubic crystal described is expected to act as a
linear retarder. The Mueller matrix formalism rep-
resentation of a retarder with a fast axis at arbitrary
orientation angle 0 is

1 0

0 cos2 20 + sin2 20 cos 8 (1 -

0 (1 - cos 8)sin 20 cos 20 sin2

0 sin 20 sin 5

The phase retardation accumulated by polarized
light in traversing a medium with anisotropic proper-
ties is given by

0 0

cos )sin 20 cos 20 -sin 20 sin 

20 + cos2 20cos5 cos20sinS ,

-cos 20 sin 8 cos 

(29)

where the retardance is B. If the retarder fast axis is
assumed to be at 00, the matrix becomes, substituting
for 8 the retardance of the crystal,

r = 2 r(na - nb)L/X, (24)

where L is the medium thickness in the direction of
propagation, A is the wavelength of light, and n0 , nb

are the indices experienced in two orthogonal direc-
tions perpendicular to the direction of propagation.
In the longitudinal mode of operation, the electric

'1 0

0 1

0

0

2sLr L
0 0 cos yn r41V_

0 0
2-rr L

-sin -n- nr4lV-

0
0

sin n3 r 41 V-

2rr3 L
cos n r 4 lVd
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Fig. 5. Modulated intensity with no sample in the polarimeter.
The first retarder is oriented at (n - 1) x 50, n = 0, 1,... 35. The
second retarder is oriented at (n - 1) x 25°. The Mueller matrix
is determined from the Fourier coefficients of this signal.

It is now clear that the electro-optic coefficient r41 can
be obtained from the measured Mueller matrix.

Note that for purposes of obtaining the electro-
optic coefficient experimentally, the fast axis of an
electro-optic crystal acting as an ideal retarder can be
at any orientation. The (4,4) matrix element of the
matrix for a retarder with the fast axis at angle 0 is
independent of fast-axis orientation, and the fast-axis
orientation can be eliminated elsewhere by adding the
(2,2) and (3,3) matrix elements or squaring and
adding elements in the fourth row and column.
Given a measured Mueller matrix of a crystal, a
known applied voltage, and a known refractive index,
one can easily obtain the electro-optic coefficient r41.

6. Measurements
Extensive measurements on commercial polarization
elements and electro-optic crystals have been made
with the polarimeter; however, this paper is intended
as a complete description of the polarimeter, not as a
report on the measurements themselves. Thus the
experimental matrix results presented here show an
example of a measured Mueller matrix without de-
tailed analyses of the data. Techniques for further
processing of the measured Mueller matrices, e.g., to
eliminate nonphysical noise, are beyond the scope of
this paper.

Simulated polarimeter intensity patterns are shown
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0
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oZ s

0 5 10 1s 20 25 30 35

RETARDER ROTATION INCREMENT

Fig. 6. Modulated intensity with horizontal linear polarizer as the
polarimeter sample.
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RETARDER ROTATION INCREMENT
30 35

Fig. 7. Modulated intensity with vertical linear polarizer as the
polarimeter sample.

in Figs. 5-8 for several ideal polarization elements.
Experimental results were obtained for the corre-
sponding real polarizers and retarders but are not
reproduced because the difference from the theoreti-
cal results is only enough to widen the plotted line at
some parts of the curve.

Ideal and measured Mueller matrices for a calibra-
tion (no sample) are, respectively,

1 0 0 0

0 1 0 0

0 0 1 0,

0 0 1

0.998

0.002

0.007

0.002

0.026 0.019 -0.002

0.976 -0.030 0.009
0.033 0.966 -0.002 

-0.004 -0.002 1.000

The measured results, normalized to unity, are given
without any error compensation. The measured ma-
trix is clearly recognizable as a noisy representation
of the corresponding ideal matrix. The repeatability
of the measurements is very good, with variations in
consecutive measurements typically of 1 part in 1000
in the nonzero Mueller matrix elements.

Error compensation may be demonstrated with the

0w

35
n5
0
w

0

20

az

10 15 20 25
RETARDER ROTATION INCREMENT

30 35

Fig. 8. Modulated intensity with half-wave plate and the fast axis
at 45° as the polarimeter sample.
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experimental calibration Mueller matrix. The source
of the large error for the two middle elements of the
diagonal is the retardance errors of the wave plates.
Using calculated values for the errors and compensat-
ing by using the small-angle-approximation error
analysis as discussed above and in Ref. 18, one sees
that the renormalized compensated Mueller matrix
for no sample becomes

0.997 -0.006 0.004 0.002

0.007 1.000 -0.007 0.009

0.008 -0.007 0.990 -0.003

0.003 -0.006 -0.007 0.998

Equations for an exact error compensation have been
derived21 for an infrared spectropolarimeter 22 and
give slightly better results.

7. Conclusions
An infrared laser polarimeter has been constructed to
measure the Mueller matrix of material samples in
transmission. The instrument is ideally suited for
calibrating infrared polarization elements. It is also
intended for studies of induced birefringence result-
ing from the application of electric or magnetic fields.
Fundamental constants of materials, such as the
linear or nonlinear electro-optic tensor coefficients
and the Verdet constant, can then be obtained from
measurements of the Mueller matrix as a function of
applied field strength. Because the complete Muel-
ler matrix is obtained, the full characterization of
electro- or magneto-optic materials that might be
expected to produce scattering and depolarization,
such as liquid crystals or microcrystalline materials,
is also possible.

This polarimeter has been designed to fulfill the
specific need of an instrument that measures polariza-
tion and fundamental electro- and magneto-optic
properties of transmissive bulk materials in the infra-
red. It has an advantage over other polarimeters
and ellipsometers in that it measures the entire
Mueller matrix, makes these measurements in the
infrared, and is designed to compensate, with novel
hardware features and data-reduction techniques, for
the major error sources (beam wander, nonideal
retarders, and element-orientation misalignments).
The polarimeter has been an effective tool in accu-
rately characterizing polarization elements. Future
papers will present polarimeter measurements of
optical elements and fundamental properties of spe-
cific electrooptical materials.

This research was supported by the U.S. Air Force
Office of Scientific Research.
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