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SKY POLARIZATION AND SUN SENSOR
SYSTEM AND METHOD

REFERENCE TO RELATED APPLICATIONS

This application claims priority to Provisional Patent
Application U.S. Ser. No. 61/894,023, entitled “Sky Polar-
ization and Sun Sensor for GPS-Denied Localization” and
filed on Oct. 22, 2013, which is fully incorporated herein by
reference.

GOVERNMENT LICENSE RIGHTS

This invention was made with government support under
Contract Number NO00014-12-M-0272 awarded by the
Department of Defense. The government has certain rights
in the invention.

BACKGROUND AND SUMMARY

Currently, in situations where Global Position System
(GPS location information is not available, a user typically
relies on dead reckoning localization (e.g., using inertial
measurements from an inertial measurement unit (IMU)).
Such localization analysis, however, is subject to drift and
error accumulation. Yaw, for example, is typically calculated
using a compass, which can be unreliable due to variations
of the earth’s magnetic field direction on the surface of the
earth, meaning yaw measurements using a compass can be
inaccurate by many degrees. Other methods for calculating
yaw include measuring celestial features such as the Sun,
moon and star positions. These methods can be accurate
(less than 1 degree of error), but are subject to reduced
availability due to cloud cover, the Sun being out of the field
of view, stars not being visible during the daytime, and the
like.

According to theory, the observed polarization at any
position in the sky depends on the Sun and the sensor
platform positions, as well as the sensor pointing direction,
where “sensor pointing direction” is the center point of the
field of view of the sensor, also known as the target point.
The target point, sensor platform position, and sun position
together define a plane. Given the Sun’s position, which is
a function of the time of day, and polarization measurements
at one or more unique pointing directions, the sensor abso-
lute position and orientation may be derived. As used herein,
“orientation” generally refers to roll, pitch and yaw. “Posi-
tion” generally refers to latitude and longitude.

A method according to the present disclosure calculates
orientation and position parameters using a sky polarimeter
that takes polarized images of multiple simultaneous target
points in the sky. The orientation and position parameters
can be useful to a navigating vehicle (especially if GPS is
denied, spoofed, or unavailable), and can work in all types
of vehicles (including ground, air and naval vehicles). The
orientation and position parameters can also be useful to
target locating systems such as far target locators and
surveying equipment. The method can provide 0.1 degree
yaw accuracy. Further, while the method is typically applied
during daylight hours, it is conceivable that the method
could be executed at night with some accuracy using the
moon instead of the sun.

A system according to an exemplary embodiment of the
present disclosure comprises an imaging sensor, polarization
state analyzer, optics, mechanical housing, memory and
logic circuitry, IMU, GPS, clock, and embedded software
that determine the orientation and position parameters. A
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method according to an exemplary embodiment of the
present disclosure comprising using polarization images and
prior position/orientation/time data from the GPS, IMU and
clock, respectively, to determine expected Sun azimuth and
elevation, comparing this expected Sun position to the
measured sky polarization pattern, and then filtering to
calculate a better orientation and position estimate of the
desired object. This localization estimate can be provided in
any number of interfaces to a navigation system, a user, a
display, or a target locator.

DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawings will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 is a block diagram illustrating a system in accor-
dance with an exemplary embodiment of the present disclo-
sure.

FIG. 2 depicts an exemplary sky polarimeter and signal
processing unit as depicted in FIG. 1.

FIG. 3a is a flowchart depicting exemplary architecture
and functionality of the system logic in accordance with an
exemplary embodiment of the disclosure.

FIG. 35 is a continuation of the flowchart of FIG. 3a.

FIG. 4 is a flowchart depicting exemplary architecture and
functionality of the step of obtaining known position/orien-
tation data, as depicted in FIG. 35.

FIG. 5 depicts exemplary system data of FIG. 2.

FIG. 6a depicts exemplary fixed polarimeter AoP maps at
four different times of the day.

FIG. 65 depicts exemplary scanning polarimeter AoP
maps at the same four different times of day as FIG. 6a.

FIG. 7 depicts an exemplary method for calculating Sun
azimuth and elevation using sky polarization measurements,
general latitude and longitude position, roll/pitch, and time/
date.

FIG. 7a depicts an exemplary method of finding the line
intersecting the sun and zenith.

FIGS. 8a-84 depict exemplary steps in a method for
performing a yaw algorithm.

FIGS. 9a-9d depict the calculation of platform yaw using
yaw algorithm for a platform rotated in yaw by 60° with a
full hemispherical field of view.

FIGS. 10a-10d depict the calculation of platform yaw
using yaw algorithm or a platform rotated in yaw by -30°
with a 90° field of view.

FIG. 11 depicts a sky polarimetry sensor in accordance
with an embodiment of the present disclosure.

FIG. 12 depicts an AoP difference image for separated
distances of 1 km and 10 km on Hawaii on May 23, 2008.

DETAILED DESCRIPTION

FIG. 1 illustrates a system 100 in accordance with an
exemplary embodiment of the present disclosure. The sys-
tem 100 comprises a sky polarimeter 110 and a signal
processing unit 107 which collect and analyze images of the
sky 109, respectively.

The sky polarimeter 110 comprises a video imaging
device (not shown) for recording polarized images, such as
a digital video camera that collects images in its field of view
(FOV); in this case, the images recorded are of the sky 109,
including the Sun 102, if visible. The sky polarimeter 110
transmits raw image data to the signal processing unit 107,
which processes the data and performs navigation and/or
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localization analysis, as further discussed herein. Although
FIG. 1 shows the sky polarimeter 110 and the signal pro-
cessing unit 107 as two separate items, the sky polarimeter
110 and signal processing unit 107 are packaged into one
device in certain embodiments.

The sky polarimeter sends raw image data (not shown) to
the signal processing unit 107 over a network 105. The
signal processing unit 107 may be any suitable computer
known in the art or future-developed. The signal processing
unit 107 receives the raw image data, filters the data, and
analyzes the data as discussed further herein to provide
navigation/localization information (not shown) to naviga-
tion/localization applications 103.

The navigation/localization applications 103 may be any
of' a number of applications wherein localization or naviga-
tion data is necessary, for example, in situations where GPS
or IMU is not available. Non-limiting examples of naviga-
tion/localization applications are: navigation systems, artil-
lery or gun sights, far target locators, personal GPS units,
mobile devices, surveying equipment, auto-pilot systems,
and the like.

The system 100 may comprise a Global Positioning
System (GPS) 125 and/or an Inertial Measurement Unit
(IMU) 124. A Global Positioning System is a satellite-based
location device that provides a user with latitude and lon-
gitude information. An inertial measurement unit is an
electronic device that measures and reports on a object’s/
platform’s velocity and/or orientation, providing a user with
roll, pitch and yaw information. Even though an exemplary
use of the system 100 is for GPS-denied and/or IMU-denied
environments, in some instances a navigation system (not
shown) will have GPS and IMUs available for a time. In
those instances, the GPS- and IMU-provided information
may be used to inform the results of the localization analy-
sis, as further discussed herein.

In some embodiments, the system 100 further comprises
a clock 123 to provide the current time and date. Time/date
may alternatively be available in the GPS.

The network 105 may be of any type network or networks
known in the art or future developed, such as the internet
backbone, Ethernet, Wifi, WiMax, broadband over power
line, coaxial cable, and the like. The network 105 may be
any combination of hardware, software, or both.

FIG. 2 depicts an exemplary sky polarimeter 110 and
signal processing unit 107 according to an embodiment of
the present disclosure. The sky polarimeter 110 and signal
processing unit 107 are sometimes referred to herein col-
lectively as the sky polarimetry sensor 101.

The sky polarimeter 110 comprises an objective imaging
lens system 128, a polarization state analyzer 127, and an
imager 1126. The objective imaging lens system 128 com-
prises a plurality of optical trains (not shown) pointed at the
sky 109 (FIG. 1). The polarization state analyzer 127 filters
the images received from the objective imaging lens system
148. The imager 1126 comprises a focal plane array (not
shown) that comprises an array of light sensing pixels. The
sky polarimeter 110 is discussed further with respect to FIG.
11 herein.

The signal processing unit 107 comprises image process-
ing logic 120 and system data 121. In the exemplary signal
processing unit 107 image processing logic 120 and system
data 121 are shown as stored in memory 1123. The image
processing logic 120 and system data 121 may be imple-
mented in hardware, software, or a combination of hardware
and software.

The signal processing unit 107 also comprises a processor
130, which comprises a digital processor or other type of
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circuitry configured to run the image processing logic 120
by processing the image processing logic 120, as applicable.
The processor 130 communicates to and drives the other
elements within the signal processing unit 107 via a local
interface 1124, which can include one or more buses. When
stored in memory 1123, the image processing logic 120 and
the system data 121 can be stored and transported on any
computer-readable medium for use by or in connection with
logic circuitry, a processor, an instruction execution system,
apparatus, or device, such as a computer-based system,
processor-containing system, or other system that can fetch
the instructions from the instruction execution system, appa-
ratus, or device and execute the instructions. In the context
of'this document, a “computer-readable medium” can be any
means that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device. The
computer readable medium can be, for example but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, device, or
propagation medium. Note that the computer-readable
medium could even be paper or another suitable medium
upon which the program is printed, as the program can be
electronically captured, via for instance optical scanning of
the paper or other medium, then compiled, interpreted or
otherwise processed in a suitable manner if necessary, and
then stored in a computer memory.

Exemplary system data 121 is depicted in FIG. 5 and

comprises:

a. A “Sun orbital equation” 201, which is the physics that
describes the mechanics of the Sun. The Sun orbital
equation is implemented as an equation stored in
memory 1123 or a lookup table.

b. “Time/date from clock/GPS” 202, which is current time
and date information from either the GPS 125 or the
clock 123.

c. “Raw imager data” 203, which is raw image data from
the imager 1126 (FIG. 2).

d. “New position/orientation” 1016 (FIG. 354), which is
the Kalman-filtered position/orientation after step 1015
of the method 1000 (FIG. 35).

e. “Known prior position/orientation” 1035 (FIG. 4),
which is the position/orientation from prior timestep,
obtained from the method 1088 (FIG. 4).

f. “Filtered imager data” 206, which is the data that has
been filtered per step 1007 of the method 1000 (FIG.
3a).

g. “Calculated position/orientation of object” 207, which
is the data obtained from step 1014 of the method 1000
(FIG. 3b).

h. “GPS position” 208, which is the prior position
obtained from the GPS 125 (FIG. 1) and used in step
1031 of method 1088 (FIG. 4).

i. “Feature positions in imagery” 209, which are the
features found in step 1012 (FIG. 3b).

j- “IMU orientation” 211, which is the orientation
obtained from the IMU 124 (FIG. 1) and used in step
1033 of the method 1088 (FIG. 4).

k. “Current expected Sun azimuth/elevation” 212, which
is the expected Sun position calculated using the Sun
orbital equation” 201 and the output of step 1018.

1. “Calculated Sun azimuth/elevation” 213, which is the
output of step 1012 of the method 1000 (FIG. 35).

The image processing logic 120 executes the processes

described herein with respect to FIGS. 3a, 36, 4, 7 and 7a.

Referring to FIG. 2, an external interface device 126

connects to and communicates with the navigation/localiza-
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tion applications 103. The external interface device 126 may
also communicate with or comprise an input device, for
example, a keyboard, a switch, a mouse, and/or other type of
interface, which can be used to input data from a user of the
system 100. The external interface device 126 may also
communicate with or comprise a display device (not shown)
that can be used to display data to the user. The external
interface device 126 may also or alternatively communicate
with or comprise a personal digital assistant (PDA), com-
puter tablet device, laptop, portable or non-portable com-
puter, cellular or mobile phone, or the like. The external
interface device may also or alternatively communicate with
or comprise a non-personal computer, e.g., a server, embed-
ded computer, FPGA, microprocessor, or the like.

The external interface device 126, GPS 125, IMU 124,
and clock 123 are shown as part of the signal processing unit
107 in the exemplary embodiment of FIG. 2. In other
embodiments, the external interface device 126, GPS 125,
IMU 124, and/or clock 123 may be outside of the signal
processing unit and/or part of the navigation/localization
applications 103.

FIG. 3a is a flowchart depicting exemplary architecture
and functionality of the image processing logic 120 (FIG. 2)
in accordance with a method 1000. In step 1001 of the
method 1000, the sky polarimeter 110 records images of the
sky 109 (FIG. 1) and sends raw image data to the signal
processing unit 107 (FIG. 1). An exemplary sky polarimetry
sensor 101 according to an embodiment of the disclosure is
depicted in FIG. 11 and described in more detail with respect
thereto.

In step 1002, the signal processing unit 107 (FIG. 1)
corrects imager non-uniformity of the images received from
the sky polarimeter 110. Examples of imager non-uniformity
include fixed pattern lines in the image, noisy pixels, bright
spots, and the like. Algorithms that are known in the art may
be used for correcting the imager non-uniformity. In some
embodiments, step 1002 is not performed because the
imager non-uniformity does not require correction.

In other embodiments, a frame averaging step (not
shown) is performed between step 1001 and 1002 to
improve signal-to-noise ratio and thereby improve the accu-
racy of the system.

In step 1003, the signal processing unit 107 removes
image distortion from the image data. An example of image
distortion is warping at the edges of the image caused by the
objective imaging lens system. Algorithms that are known in
the art may be used for correcting image distortion. In some
embodiments, step 1003 is not performed.

In step 1004, the signal processing unit 107 applies
polarization calibration to correct fir flaws in the polarizer
(not shown) or lenses (not shown) of the sky polarimeter 110
(FIG.1). The polarization calibration eliminates the inherent
polarization signature of the polarimeter so that the image
reflects the polarization properties of the sky only, and not
an image modified by the signature of the polarimeter itself.
The polarization calibration uses a single calibration coef-
ficient for an entire image in some instances, and uses a
pixel-by-pixel changing coeflicient in other instances, for
more accuracy.

In some embodiments, the method 1000 “splits” into three
or more independent, parallel-processed polarization
images, each with a different polarization state, one for each
optical channel in the sky polarizer 110 (FIG. 11). Further,
some embodiments have one or more additional “open”
optical channel, as discussed with respect to FIG. 11 herein.
Images from such open channels will not require steps 1004
or 1005.
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In some embodiments, an image registration step (not
shown) is performed to spatially register the three or more
independent polarization images of the sky polarimetry
sensor 101 (FIG. 11) with each other. Such an image
registration step is not required if a mechanical registration
is sufficient.

In some embodiments, an image registration step (not
shown) is performed to spatially register the three or more
independent polarization images of the sky polarimetry
sensor 101 (FIG. In step 1005, the Stokes parameters (S, S,
S,), DoLLP, and AoP are calculated from the resultant image.
A detailed discussion of the Stokes parameters can be found
below.

In step 1006, the signal processing unit 107 detects
clouds, the Sun, and other obscurants using S, and DoLP,
and in step 1007, the signal processing unit 107 filters S, S,,
S,, DoLP, and AoP to mask regions where clouds and
obscurants were detected in step 1006. Because the polar-
ization pattern of the sky 109 (FIG. 1) changes very slowly,
the sky 109 will appear very flat and smooth in the S, and
DoLP images. Clouds and trees (not shown), for example,
will appear as large highly depolarized areas in the DoLLP, or
bright/dark areas in S, and can be masked or filtered out
using S, and DoLLP, applying methods that are known in the
art.

FIG. 354 is a continuation of the flow chart of FIG. 3a. In
step 1008, the latest known position/orientation data is
obtained. This data will be used to refine the position/
orientation information that results from the process 1000.

FIG. 4 depicts an exemplary method 1088 for the step
1008 for gathering the latest known position/orientation
data. In step 1030, the signal processing unit 107 checks to
see if current latitude and longitude information is available
from GPS 125 (FIG. 1). If current latitude and longitude
information is available, then in step 1031, the signal
processing unit 107 obtains that data. If current latitude and
longitude information is not available from GPS 125, then in
step 1034 the signal processing unit 107 can use a seed value
or prior position data for the localization analysis. In this
regard, there may be prior GPS data available, and if not, the
user could input his last known location.

In step 1032, the signal processing unit 107 checks to see
if current roll and pitch information is available from an
IMU 124 (FIG. 1). If current roll and pitch information is
available, then in step 1033, the signal processing unit 107
obtains that data. If current roll and pitch information is not
available from IMU 124, then in step 1034 the signal
processing unit 107 can use a seed value or prior orientation
data for the analysis. In this regard, there may be prior IMU
orientation data available, and if not, the user could input his
last known orientation. As a result of the process 1088, the
signal processing unit 107 will have obtained the latest
known position/orientation data 1035.

Referring back to FIG. 35, in step 1012, the sun azimuth,
elevation, and zenith are obtained. FIG. 7 depicts an exem-
plary method 3000 for finding the sun azimuth, elevation,
and zenith.

In parallel with step 1012, the signal processing unit 107
in step 1018 uses the Sun orbital equation 201 (FIG. 5) to
calculate the expected Sun azimuth and elevation, using the
known position/orientation data from step 1008, and time
data retrieved from the clock 123 (FIG. 1) in step 1019.

In step 1014, the measured roll, pitch, and yaw are
determined using the measured Sun azimuth/elevation from
step 1013 and the expected Sun azimuth/elevation from step
1018. In this regard, the roll and pitch are obtained from the
zenith value, by measuring the displacement of the zenith
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from the center of the focal plane array. The yaw is the
difference between the measured sun azimuth 3003 (ob-
tained from method 3000 (FIG. 7)) and the expected sun
azimuth (obtained from step 1018 (FIG. 35)). And finally,
the latitude and longitude are calculated from comparing the
sun elevation 3011 (obtained from method 3000 (FIG. 7)) to
the expected sun elevation (obtained from step 1018 (FIG.
3b) given the time/date from step 1019 (FIG. 35).

In step 1015, the prior position estimate and new position
prediction are fused via Kalman filtering or variants to
determine a new position/orientation 1016, using a method
known in the art.

Fundamentals of Imaging Polarimetry

Polarization of light results from the vector nature of light
(as an electromagnetic wave). It is a fundamental, indepen-
dent quantity so that two beams of light with the same
amplitude and wavelength can have very different polariza-
tion states.

Polarimetry is simply the measurement of the polarization
state of an incident beam of light. In its simplest form,
imaging polarimetry can be accomplished by taking two
recordings with two different orientations of a linear polar-
izer. The linear polarizer oriented at some angle, 0, filters the
orthogonal state, and if n images are collected for some A0
(such that AG=m/n, where n is suitably large enough; e.g.
n>3), then a sinusoidal modulation will be evident in those
regions of the image that are, to some degree, polarized. The
degree of polarization, from 0% to 100%, is directly related
to the depth of modulation, so that completely unpolarized
regions undergo no modulation throughout the rotation of
the linear polarizer.

While this description of polarimetry is somewhat intui-
tive, it is not necessarily helpful or convenient in a quanti-
tative representation of the polarization content of a single
pixel of an image or a single light beam. This analysis uses
the Stokes vector, first introduced by G. G. Stokes in 1852,
in which

S0 (E +E, ) Io + Ioo ey
s |2 {EP - IE,») lo = Isg

S2 2Re(ELE}) Ls—1Iiss |

53 ~2In(E.E}) I —Ig

where E_and E are the component electric field amplitudes
and [ is the radiance collected by the camera equipped with
a polarizer at the appropriate orientation. The first two
components of the Stokes vector (S, and S,) are measured
using a linear polarizer orientated at 0° and 90° (horizontal
and vertical). The subscripts of | in Equation 1 for S, and S,
correspond to the orientation of the linear polarizer. The S,
component is found by summing the two intensity measure-
ments and is exactly equal to the standard radiance image
from a “normal” camera. The S, component is determined
by subtracting the two intensity measurements and is there-
fore referred to as the degree of horizontal polarization.
Similarly, S, is the degree of 45° polarization. The I; and I,
refer to the radiance collected by the camera if it were
equipped with left and right circular polarizers, so S, is
called the degree of circular polarization.

With the Stokes vector defined, two important compo-
nents derive directly from the Stokes vector and are used: the
degree of linear polarization (DoLP) and the angle of
polarization (AoP). The DoL.P represents the percentage of
light that is linearly polarized, such that
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Additionally, the AoP, also called the polarization orienta-
tion, represents the dominant orientation of linearly polar-
ized light, defined as

AOP= tan*l(::—f). 3)

Rayleigh Scattering Theory

Within the atmosphere, Rayleigh scattering of light causes
a defined polarization pattern, which is dependent on the
celestial position of the Sun or moon and the observer’s
relative position and pointing direction (or orientation). The
majority of this scattering occurs by air molecules (specifi-
cally nitrogen and oxygen) in the stratosphere at roughly 30
km above sea level. The polarization state of this scattered
light is described using the previously defined Stokes vector
(Equation 1) and its components, where S, represents the
overall intensity (radiance), DoL.P represents the percentage
of light that is linearly polarized (Equation 2), and AoP
represents the orientation angle of the linearly polarized
light (Equation 3).

It is important to note that the light that is scattered at an
angle of 90° from an unpolarized light source (e.g., the Sun
or the moon) will be highly linearly polarized. Likewise,
light that is scattered at an angle of 0° will be unpolarized.
Therefore, the polarization pattern of the sky is primarily
dependent on the angle formed between the observer, the
scattering position (i.e., the target point in the sky), and the
light source (which can be the Sun or moon). Since the
scattering plane is static, and assuming the observer is
stationary, the polarization pattern will depend on the celes-
tial position of the Sun or moon and the latitude and
longitude of the sensor. The key point is that the celestial
position of the Sun/moon can be used for navigational
purposes; therefore, a map which describes the position of
the Sun/moon relative to the observer and relative to a fixed
scattering plane can provide a wealth of information to help
deduce the observer’s position/orientation.

Since the Rayleigh scattering effect is based on a number
of variables, the observed sky polarization pattern changes
based on the date/time and the latitude, longitude, and
orientation of the sensor. Therefore, three of these param-
eters (sensor latitude, longitude, and orientation) can be
predicted as long as the date/time is known and a sufficient
number of distinct polarization measurements of the sky are
made. This would allow for absolute positioning simply
based on multiple distinct views of the sky or a single, large
field of view (FOV) image.

Note that additionally, while intensity and DolP are
affected by clouds and other atmospheric conditions that
partially depolarize the light, the AoP often does not change
in these conditions; this is because it relates only to the
residual polarized light which has transmitted through the
cloud, not the light scattered by the cloud which is unpo-
larized. The important point is that the AoP pattern of the sky
typically sustains despite the presence of intervening clouds,
and any unscattered transmitted light will retain the orien-
tation information required to localize the sensor. While this
may represent a small fraction of the light incident onto the
clouds, potentially leading to low signal-to-noise ratio
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(SNR) problems, it nonetheless contains exactly the infor-
mation needed to determine the sensor’s orientation and
position.

Transformation to Scanning Polarimeter Coordinate System

There are two general ways to measure the angle of
polarization (AoP) of the sky: using a scanning polarimeter
where the sky polarization sensor sequentially measures
each discrete point in the sky by pointing directly towards it;
and using a fixed polarimeter where the focal plane array
(FPA) is fixed and each discrete point in the sky enters the
optical system with a different angle simultaneously. The
system of the present disclosure uses a fixed polarimeter;
however, the representation of the polarization pattern gen-
erated by a scanning polarimeter is useful for navigational
purposes due to the appearance of a convergence point
feature at the zenith from which latitude, longitude, and yaw
can be extracted. Incidentally, the measured polarization
patterns differ because the scanning polarimeter has an
associated changing coordinate system that changes with
each target position while the FPA-based measurement has
a single common coordinate system for each pixel. There-
fore, a method to transform the polarization map measured
by a fixed polarimeter to a navigational map was developed.
Note that both polarization maps represent the same data
measured using different methods and presented in different
coordinate systems.

FIGS. 6a and 65 depict the results of the platform
coordinate transform. Specifically, FIG. 6a depicts exem-
plary fixed polarimeter AoP maps at four (4) different times
of the day. FIG. 65 depicts exemplary scanning polarimeter
AoP maps at the same four different times of day as FIG. 6a.
A coordinate transform based on the known relationship
between the coordinate systems was used to convert from
the fixed polarimeter maps of FIG. 6a to the scanning
polarimeter maps of FIG. 6. The figures depict polar plot
projections where radius represents altitude, angle repre-
sents azimuth, and the yellow disk represents the Sun 102.

The AoP of 0° and 180° indicates alignment to the
imager’s x-axis; +90° both indicate alignment along the
imager’s y-axis. The data illustrated is representative of a
Huntsville, Ala. sensor on Oct. 31, 2012. The sky is assumed
to be cloudless and the collected light derived from single
scattering (Rayleigh) phenomena in the atmosphere. Light,
patchy clouds will not drastically affect the pattern making
the single scattering assumption a simplification that is
applicable to many measurement situations.

The FIG. 6a AoP maps are in the FPA coordinate system
(i.e. what was measured), while the FIG. 65 maps show AoP
in scanning polarimeter coordinates. Note the appearance of
a discernible line feature 168 in the scanning AoP plots
across the sky connecting the Sun 102 and zenith 169
positions (the zenith 169 being the node at the center of the
map where the axes cross). The zenith is defined as the point
in the sky or celestial sphere directly above the observer.
Similarly, convergence points located at the zenith and the
Sun can be used to determine useful navigation data as
described below.

Finding the Sun and Zenith Positions

Based on the transformed AoP maps and the observation
of multiple line and nodal features indicating the Sun and
zenith, a method was developed to find the spatial relation-
ships between these two points. These relationships can be
used to determine the measured Sun azimuth and elevation.
This method presumes the sensor and platform coordinate
systems are aligned (e.g., the platform forward direction is
the sensor’s negative y-direction), or that any offset is
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known, constant, and can therefore be incorporated into the
data reduction to determine platform yaw.

FIG. 7 illustrates an exemplary method 3000 for perform-
ing step 1012 of the method 1000 (FIG. 35) and calculating
platform yaw using only sky polarization measurements,
general latitude and longitude position, and time/date.

In step 3001, the signal processing unit 107 determines
whether roll/pitch information is available from an IMU 124
and whether the zenith is visible. If both are available, then
in step 3002 the Sun azimuth 3003 can be found directly
from the AoP value at the zenith in the “fixed AoP” image.

If the roll/pitch information is not available or the zenith
is not visible, then in step 3005, a coordinate transform is
performed on the measured polarization pattern to change
the pattern to one containing discernible features useful for
navigation, i.e., a “scanning AoP” image. The coordinate
transform discussed above is used for this step in one
embodiment. Step 3005 is depicted in FIGS. 6a and 654,
where the scanning AoP image is in FIG. 6.

In step 3006, the signal processing unit 107 finds a line
intersecting the sun and zenith. In one embodiment, the line
intersecting the sun and zenith is performed using a method
4000 shown in FIG. 7a.

In step 4001 of the method 4000, a minimum detection is
performed to extract the region of the image connecting the
Sun and the zenith. A threshold is applied to this output
image to convert the image to a binary image. FIG. 8a
depicts an exemplary image from the minimum detection
step 4001, to extract a region of the image 170 connecting
the Sun (not shown) and zenith (not shown).

In step 4002 (FIG. 7a), a morphological erosion operation
is performed on the on the binary image (of FIG. 8a) to
reduce the detected minimum region 170 to a more refined
line 171 (FIG. 8b). This step removes many of the noisy
pixels (not shown) around the border and thins the center.
FIG. 8b depicts the image resulting from step 4002.

In step 4003, a line-finding algorithm is applied to extract
the Sun-zenith line. In one embodiment, the line-finding
algorithm used is a Hough transform. See, e.g., R. O. Duda
and P. E. Hart, “User of the Hough Transform to detect lines
and curves in pictures,” Comm. ACM, Vol. 15, pp. 11-15,
1972.

After the line intersecting the Sun and zenith is found in
step 3006, the Sun’s azimuth 3003 can be located along the
Sun-zenith line.

In step 3007 of FIG. 7, convergence features can be found
at the sun and zenith. Corner finding algorithms or other
methods known in the art may be used to find the convergent
(nodal) features at the sun and the zenith. These features
(illustrated in FIG. 64) can also be used to determine the Sun
azimuth 3003. In this regard, the slope of line between the
convergent features is the Sun azimuth 3003. In addition, the
zenith position 3087 is directly derived from either the
expected zenith from IMU roll/pitch (from 3001) or step
3007.

In step 3004, the signal processing unit determines if the
Sun is visible in the open optical channel of the sky
polarimeter 110. (The open optical channel is discussed
further with respect to FIG. 11.) if the sun is not visible, the
Sun elevation is found using steps 3005 and 3007 discussed
above.) If the sun is visible, in step 3009 the centroid of the
Sun can be found in S,. In step 2010, the distance between
zenith 3087 and the Sun position output from 3009 is
converted to angular distance, subtracted from 90°, and this
calculated value is the measured Sun elevation 3011. Sun
elevation may also be calculated from the same distance
calculation method using convergence features from 3007.
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Calculation of Platform Yaw

The platform yaw is calculated as the difference between
the measured/calculated Sun azimuth 3003 (FIG. 7) and the
estimated Sun azimuth (from 1018, FIG. 35). In one embodi-
ment, the angle of the Sun-zenith line is calculated using a
Hough transform with respect to the sensor’s positive y-axis,
and the expected Sun azimuth comes from the generally
known sensor location and the time and date.

FIG. 8¢ depicts the results of calculating platform yaw in
step 1014 in FIG. 3b, with the final calculated angle,
114.624°. This angle represents the measured or calculated
Sun azimuth 3003 (FIG. 7). For the simulation, the platform
was purposefully pointed north (i.e., sensor yaw=0°) so that
the difference between the expected Sun azimuth and cal-
culated Sun-zenith line angle (representing the measured
Sun azimuth) should be zero. To calculate yaw, we subtract
these two values as shown:

Yaw=Azimuthg,,,—~Azimuth ;. ,s4rea=114.186°—

114.624°=0.162° 4

where the Yaw represents the sensor yaw and the Sun’s
azimuth is calculated based on the known date/time and
general platform latitude/longitude. The calculated platform
yaw was 0.162°, whereas the actual yaw was 0.0°. There-
fore, the error is 0.162°. This inaccuracy does not include
measurement noise, but represents only process noise. Also,
this process noise could be improved by performing addi-
tional pre-processing steps or improving the thresholding
operation.

Note that in the preceding paragraph, Azimuthg,, comes
from the Sun position equation and Azimuth ;7,70 COMES
from the difference between the Sun-zenith line direction
and the reference axis. For this example, both approaches
should yield the same value but the first uses no polarization
info, just the platform latitude/longitude and time.

Note also that the Sun’s azimuth is along the Sun-Zenith
line. This line angle is measured with respect to some
reference direction on the platform. For example, here the
positive y-direction of the platform was pointed North so
that the angle between the Hough line and this direction
represents the sensor, and thus platform, yaw. This value is
called Azimuth ;.. ... 1 Eq. 4 above. The reference direc-
tion can be any value that is predefined (e.g., platform x
direction, platform y direction, etc).

FIGS. 9a-9d depict another example of the yaw calcula-
tion in 1014 (FIG. 34). In this example sky image data was
collected in Huntsville, Ala. at 0800, with the platform
rotated to absolute yaw of 60°. FIG. 94 depicts the measured
AoP map, FIG. 95 depicts the calculated scanning AoP
pattern using method 3005 (FIG. 7). FIG. 9¢ depicts the
minimum plot from 4002 (FIG. 7a). FIG. 9d depicts the
Hough line with calculated angle using 4003 (FIG. 7a). In
this case, the Hough line angle was found to be 54.496°,
meaning the sensor yaw is calculated as,

Yaw=114.786°-54.496°=60.290° %)

where, again, 114.786° is the azimuth of the Sun given the
platform location and time/date. Therefore, the absolute
error in the calculated platform yaw is 0.29°.

FIGS. 10a-10d depict another example of the yaw calcu-
lation using 3003 from FIG. 7 and Sun azimuth from 1018
(FIG. 3b). In this example sky image data was collected in
Huntsville, Ala. at 0800, with the platform rotated to with
the platform rotated to absolute yaw of -30' or 330°. FIG.
10a depicts the measured AoP map, FIG. 105 depicts the
calculated scanning AoP pattern. FIG. 10¢ depicts the mini-

20

25

30

35

40

45

50

55

60

65

12

mum plot. FIG. 104 depicts the Sun-zenith line with calcu-
lated angle. In these figures, the FONT of the sensor was
limited to 45°.

In this case, the Sun-zenith line angle was found to be
144.419°, meaning the absolute yaw is calculated as,

Yaw=114.786°-144.419°=-29.632° (6)

From these examples, the platform yaw is demonstrated
as calculable if three things are known:
1. Orientation of the sensor with respect to the platform’s
axes.
a. Assume the two are aligned meaning there is no roll,
pitch, or yaw of the sensor with respect to the
platform’s axes. Note that for an upward pointing

sensor,

1 Ro.llsensor:YaWplatform
ii. Pitch,,,,=Pitch,;,. .,
. Yawsensor:Rouplatform

b. If misaligned, the offsets in sensor roll, pitch, and
yaw are known to good accuracy

2. Date and time of measurement

3. General latitude and longitude of platform at time of

measurement (general, as in less than 150 km accuracy)
Calculation of Platform Roll and Pitch

Additionally, platform pitch and roll manifests as a dis-
placement of the acquired polarimetric image. Specifically,
for a northward pointing platform, the platform pitch cor-
responds to image translation along the y-direction while
roll translates the image along the x-direction. In fact,
neither of these will affect the calculated platform yaw
angle. This is because yaw is dependent on the Sun-zenith
angle with respect to the vertical image direction and image
translation will not change this angle. The yaw angle is
invariant to coordinate transforms that amount to linear
translation since they are based on platform rotations about
axes orthogonal to the one used to measure the yaw angle.
Importantly, platform pitch and roll can be deduced from the
displacement of the zenith from the image center, defined by
the convergence of all polarization orientations in the rotat-
ing AoP coordinate frame. The displacement of the zenith in
x and y pixels from the image center can be used to perform
the conversion to pitch and roll in angular space. Therefore,
this function of the sky polarimeter system can be used to
calculate absolute roll and pitch in addition to yaw without
use of GPS, a compass, or an IMU, or may be used to
augment one or more of these sensors.

In FIG. 7, the zenith location 3087 may be used in
conjunction with the known center pixel coordinate of the
FPA to calculate the x- and y-axis offset of the zenith from
the center pixel. This offset is then converted into angular
coordinates which correspond to the sensor roll and pitch.
Calculation of Platform Latitude and Longitude

Latitude and longitude of the platform can be determined
using the elevation of the Sun 3011 (90° minus the distance
between Sun and zenith). With enough measurements aver-
aged over time and/or an initial latitude/longitude estimate,
a more precise estimate of latitude/longitude can be deduced
using this measured Sun elevation. Thus, the system could
be used to augment GPS when GPS is denied or unavailable.

The Sun elevation will provide a “region” on the Earth
that may yield that measurement at the given time and date.
By observing the change of the Sun elevation over time, or
by moving the platform, this region can be refined.

Knowing the general latitude and longitude and estimat-
ing yaw from the prior described method, the system can
analyze the scanning AoP images from step 3005 (FIG. 7) to
determine the Sun elevation. From the Sun elevation, plat-
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form latitude and longitude can be calculated. The solar
kinematic model from 201 is applied to determine the region
on the Earth surface that would provide the measured Sun
elevation at the given date/time. This region is likely large
(on the order of multiple kilometers) for a single measure-
ment. However, by observing the Sun’s elevation change
over a period of time, this position can be further refined.
Likewise, noisy positional estimates can be averaged over
time for a stationary or slowly moving vehicle to provide a
better accuracy positional estimate. Additionally, these posi-
tional estimates can be fused with dead reckoning sensors
(IMU, odometry) in a Kalman filter or variant to provide an
even better solution: in this case the dead reckoning errors
are bounded by the less accurate sky polarization positional
information. Thus, the sky polarization system could aug-
ment GPS information when GPS is denied or unavailable.

To determine the accuracy of this measurement, a differ-
ence image was generated using two scanning AOP maps
from the model, separated on the Earth by a certain distance.
Then, the difference image is analyzed to determine if
measurements at specific distances are within a typical
sensor noise model.

FIG. 12 depicts the difference image for a separated
distance of 1 Km on Hawaii on May 23, 2008. These
difference images were also tested for 10 km using the same
parameters. The AoP measurements offer some contrast at
distances of both 1 km and 10 km. For 1 km, the section of
map where detection is possible is confined within the
overlaid red oval 195, which represents the +0.1° change
contour. Thus, the AoP change at a 1 km distance is
measurable on the map within this area. In the 10 km case,
most of the image provides a measurable difference in AoP.
Thus, single measurement accuracy of latitude and longitude
of 1-10 km are expected.

Note that general positional information (i.e. latitude,
longitude) is needed to calculate the Sun azimuth and
subsequently platform yaw (i.e. within 150 km). This azi-
muth/yaw is required along with Sun elevation to determine
platform position (latitude, longitude). Initial prior informa-
tion regarding a starting lat/lon position is therefore needed
to seed the initial measurement. If this information is not
available, the platform must remain stationary to provide a
sufficient stare time of the Sun motion to determine the sun
azimuth and elevation components of the vector and better
refine the platform position on Earth.

Sky Polarimetry Sensor Example

FIG. 11 depicts an exemplary embodiment of a sky
polarimetry sensor 101. The sensor 101 comprises a sky
polarimeter 110 and a signal processing unit 107 housed
together within a chassis 301. The sensor 101 comprises
three (3) optical channels 311 in the illustrated embodiment,
each channel 311 comprising an objective lens 303, a
polarization filter 304, and a detector 312.

The three detectors 312 are part of a focal plane array 305.
The focal plane array may comprise any of a number of focal
plane array technologies, including, for example, comple-
mentary metal-oxide semiconductor (CMOS) focal plane
array or charge coupled device (CCD) focal plane array. The
polarization filters 304 are uniquely oriented, and in one
embodiment three filters 304 are oriented at 0, 60 and 120
degrees.

Although the illustrated embodiment has three optical
channels 311, other embodiments may have more channels
311. Further, some embodiments of the sky polarizer 110
comprise an additional, “open” channel (not shown) which
does not comprise a polarization filter 304. The open chan-
nel simply attenuates the image from the lens 303. In this
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regard, a neutral density filter (not shown) instead of a
polarizing filter in the open channel attenuates the signal.

A camera interface PCB 306 comprises the circuitry for
the sky polarizer 110 and a FPGA processing PCB 307
comprises the circuitry for the signal processing unit 107. A
power/video/output PCB 308 comprises the circuitry for
powering the sensor 101 and interfacing with the navigation/
localization applications 103 (FIG. 1). A panel 313 on the
sensor 101 comprises a power interface 309 and a commu-
nication interface 310.

This disclosure may be provided in other specific forms
and embodiments without departing from the essential char-
acteristics as described herein. The embodiments described
are to be considered in all aspects as illustrative only and not
restrictive in any manner.

What is claimed is:

1. A method of determining orientation of an object, the
method comprising:

recording raw image data of the sky using a sky polarim-

eter;

calculating Stokes parameters (S,, S;, S,), degree of

linear polarization (DoLP) and angle of polarization
(AoP) from the image data;

detecting obscurants and filtering the obscurants from the

image data to produce a filtered image;
obtaining position/orientation data of the object;
finding the Sun azimuth and elevation in the filtered
image by performing a coordinate transform on a
measured polarization pattern to generate a scanning
AoP image;

determining one or more of the roll, pitch, yaw, latitude
and longitude of the object using the filtered image;

when yaw is determined using the filtered image, calcu-
lating platform yaw based on the angle between the line
intersecting the Sun and the zenith and expected Sun/
azimuth position for a given date and time;

performing minimum detection and extracting a region of
the image containing the Sun and zenith;

applying morphological erosion on a binary image to

reduce the detected minimum region to a single line;
and

extracting a sun-zenith line.

2. The method of claim 1, further comprising fusing a
position estimate and a position prediction of the object to
determine the new position/orientation of the object.

3. The method of claim 1, wherein the step of finding the
Sun azimuth and elevation in the filtered image comprises
finding the Sun azimuth from a zenith value in a fixed AoP
image.

4. The method of claim 1, wherein, the step of finding the
Sun azimuth and elevation in the filtered image comprises
performing a coordinate transform on a measured polariza-
tion pattern to generate a scanning AoP image.

5. The method of claim 1, wherein the step of extracting
the sun-zenith line comprises performing a Hough trans-
form.

6. The method of claim 1, wherein the sky polarimeter
comprises three or more polarization optical channels, each
polarization optical channel comprising a uniquely-oriented
polarization filter.

7. The method of claim 6, wherein the sky polarimeter
further comprises an open optical channel that attenuates
image data received from an objective lens without polar-
ization.

8. The method of claim 7, wherein the step of finding the
Sun azimuth and elevation in the filtered image further
comprises detecting the sun in the open optical channel.
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9. The system of claim 8, wherein the step of finding the
Sun azimuth and elevation in the filtered image further
comprises finding the centroid of the sun in SO and calcu-
lating the distance between the Sun and the zenith, which
distance is the Sun elevation. 5
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