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ABSTRACT 
 

The proliferation of unmanned systems in recent years has sparked increased interest in multiple areas of 

research for on-board image processing including autonomous navigation, surveillance, detection, and tracking 

to name a few. For these applications, techniques for reducing scene clutter provide an increased level of 
robustness for autonomous systems and reduced operator burden for tele-operated systems. Because imaging 

polarimetry frequently provides complementary information to the standard radiometric image, it is anticipated 

that this technology is well suited to provide a significant reduction in scene clutter. In this paper, the authors 

investigate the use of imaging polarimetry under a number of representative scenarios to assess the utility of this 

technology for unmanned system applications. 
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1. INTRODUCTION 

 

 The utilization of unmanned vehicles as a force multiplier has resulted in an ever expanding number of 

operation spaces for these platforms.  Consequently, there is an increased need to expand the performance 

capabilities of the on-board sensor suite while maintaining low size, weight, power, and cost (SWaP-C).  The 

advent of microbolometer technology in recent years has resulted in a low SWaP-C thermal imager that is well 

suited for numerous unmanned applications.  While the capabilities of these sensors is clearly evident, thermal 
imagers have traditionally demonstrated poor performance in cluttered scenes where large portions of the image 

are in thermal equilibrium.  In the thermal infrared, cases of thermal equilibrium between objects results in a loss 

of contrast, making complex scenes difficult to interpret.  Passive Long Wave Infrared (LWIR) imaging 

polarimetry is an appealing solution as it provides  additional scene contrast without sacrificing the standard 

thermal image1.   

 

 

Figure 1. Enhancement of thermal imagery using polarization-based color queuing 

 



 

 

It has been well established in the literature that imaging LWIR polarimetry provides a robust method for 

recovering contrast in scenes with low thermal variation2.  Polarimetric signatures have been shown to be stable 

throughout the diurnal cycle including demonstrating particular utility during instances of thermal cross-over3.  

Because it is fundamentally a physics-based approach for recovering image contrast, imaging polarimetry is 

particularly adept at distinguishing between man-made and naturally-occurring objects
4,5,6,7

.  This paper seeks to 

demonstrate infrared  imaging polarimetry's capability to reduce clutter in complex thermal scenes.  Specific 
interest is given to the microbolometer-based polarimeters due to their capability to deliver optimum 

performance while maintaining low SWaP-C.  Presented here-in are numerous scenarios that demonstrate 

polarimetry's ability to augment the standard thermal image with particular consideration for unmanned 

applications including autonomous platforms, tele-operation, and Intelligence, Surveillance, Reconnaissance 

(ISR). These results may be achieved through any number of architectures to sense infrared polarization. 

   

2. REVIEW OF POLARIMETRY 

 

Polarization results from the vector nature of light.  As light propagates along a given vector, the electric field 

oscillates sinusoidally along an axis that is orthogonal to the propagation axis, as described by the wave 

equation8.  This oscillation can be described using four parameters: 1) the amplitude of the oscillation (i.e. the 

intensity), 2) the spacing between the peaks of the oscillation (i.e. wavelength), 3) the coherence of the 

oscillation, and 4) the angle between the axis of oscillation and horizontal axis (i.e. the polarization angle), as 

shown in Figure 2. Polarization is therefore a fundamental quantity of the propagating light wave just as 

intensity, wavelength, and coherence are also fundamental quantities.   
 

 

Figure 2. Polarization of propagating light wave 

 
As the wave interacts with a surface boundary (whether through reflection or emission), the surface 

preferentially passes one orientation of the e-field.  Similarly the same surface will preferentially attenuate the 

orthogonal e-field orientation.  The combination of these two actions produces polarized light.  For emission, the 

surface preferentially emits an e-field that oscillates parallel to the surface normal (the opposite is true for 

reflection)9. The degree of preferential emission and preferential attenuation (i.e. the degree of polarization) is 
dependent on the smoothness of the surface and the angle of incidence (AOI) between the incident light and the 

surface10.  Thus, for a polarimetric image, contrast between two surfaces occurs when there is a change in the 

surface roughness and/or AOI relative to the sensor.  Comparison of example thermal and polarimetric images 

are presented in Section 4. 

 

As the oscillation of the e-field can be described using a vector, it is therefore possible to decompose that vector 

into its two orthogonal components.  Typically, the orthogonal components used are the horizontal (parallel to 

the earth's surface) and vertical (perpendicular to the earth's surface).  The comparison of horizontal and vertical 

is referred to as the S1 parameter.  Because S1 is based on a comparison of horizontal and vertical, there are 

three special cases to consider: 1) all light is polarized at 45o, 2) all light is polarized at 135o, and 3) all light is 

equally distributed across all possible orientations (i.e. unpolarized light).  Each of these three cases will produce 



 

 

an S1 value of zero, even though the light is completely polarized in cases 1 and 2.  To address this, a second 

standard parameter is used to compare 45o and 135o light, referred to as the S2 parameter.  Finally, the standard 

radiometric image is therefore simply the summation of orthogonal components from either S1 or S2.   

 

Put together, the S0, S1, and S2 parameters (collectively referred to as Stokes Parameters) provide a complete 

description of the orientation and amplitude of the incident thermal energy.  One additional parameter, the 
Degree of Linear Polarization (DoLP), combines all the available polarimetric information into a single value.  

For the purposes of this paper, DoLP will serve as the polarimetric data product of interest for comparing 

polarimetry to the standard radiometric image.  The functional form for these polarimetric data products can be 

found in Equations (1) through (4). 
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3. INFRARED IMAGING POLARIMETERS 

 

There are several different architectures, or design approaches, for collecting infrared polarimetric imagery. 

Polaris Sensor Technologies has an extremely wide range of these architectures available as commercial off the 

shelf cameras / sensor systems. The choice of one particular architecture over another has much to do with the 
desired polarimetric accuracy/resolution, the electronic processing capability available, and the SWaP-C 

constraints. In general, the results that we present throughout this paper are achievable using any one of our 

COTS sensors so that the choice of sensor for a particular application is truly driven by those factors just 

mentioned. 

 

While S0 is the standard thermal image and reports changes in intensity, the other three polarimetric data 

products can be regarded as a variation on Michelson's Contrast Formula and thus produce image contrast that is 

not dependent on intensity11.  For this reason, the contrast obtained from S1, S2, and/or DoLP can be fused with 

the thermal image to create an Enhanced Thermal (eThermTM) image that leverages all available information to 

generate a more-complete representation of the scene.  Because S0, S1, S2, and DoLP are all generated 

simultaneously for each output frame, the eTherm image is therefore simultaneously generated as well.  
 

 

Figure 3. Simultaneous capture of thermal, polarization, and eTherm imagery 

 

4. RECOVERY OF CONTRAST 

 

The following figures and tables present numerous scenarios that demonstrate the utility of imaging LWIR 

polarimetry to augment the standard thermal image.  The reader is reminded that imaging polarimeters capture 

both the polarimetric data product and the standard thermal image simultaneously.  All data is organized into a 

standard format showing a visible reference image on the left, the standard thermal image (S0) in the middle, and 



 

 

the DoLP image on the right.  Regions of Interest (ROI's) are denoted in the visible image, and spatial averages 

for each corresponding ROI in the thermal and DoLP images are presented in an accompanying table.  The 

figures are intended to provide the reader with a qualitative comparison of the thermal and polarimetric image, 

with the tables providing the necessary quantitative scientific data. The polarimeter was calibrated with a 

laboratory blackbody using a standard multi-point non-uniformity correction method to produce thermal images 

in radiometric units (Watts/Centimeter2/Steradian)12.  As per Equation (4), DoLP has normalized units.  In order 
to present the data fairly, the images are displayed with upper and lower bounds derived from image statistics as 

per Equations (5) and (6), where " " denotes a spatial operation with both the thermal and DoLP images 

utilize a common " " multiplier.  In the following tables we will demonstrate that with the polarimetric image, 

the improvement in target contrast is such that even a simple thresholding scheme is sufficient to identify targets 

of interest, such as vehicles, with a high polarization value.  For the purposes of this paper the "Threshold" value 

presented in the accompanying tables is calculated as per Equation (7).  In this way, the threshold value is 

driven by the statistics of the scene, rather than an arbitrary threshold value. 
 

 ageStDevageMeanBoundLower ImIm    (5) 

 ageStDevageMeanBoundUpper ImIm    (6) 

 ageStDevageMeanThreshold Im2Im   (7) 

 

Figure 4, shown below, presents a group of cars cast in shadow on three sides from a surrounding parking 

structure.  The vehicles have been allowed to reach near thermal equilibrium with the surrounding area to 

demonstrate minimum contrast in the thermal image (center).  Comparatively, the DoLP image (right) shows 

excellent recovery of contrast of the vehicles.  Spatial averages of the various ROI's can be found in Table 1 for 

both the thermal and polarimetric imagery. Note that even though the area surrounding the vehicle has a low 

average contrast in both images, the contrast between the windshield and the frame is almost an order of 
magnitude higher in the DoLP frame versus the thermal image.  Note that in the thermal image the windshield is 

below the threshold value, but by contrast the windshield is well above the DoLP threshold. 

 

 

Figure 4. Vehicles at thermal equilibrium with surroundings shown in the visible reference image (left), 

standard thermal image (middle), and polarimetric image (right). 

 

Table 1. Spatial average measurements from Figure 4 ROI's 

Region of Interest Description S0 (W/cm2/Sr) DoLP 

Entire FOV Image Mean 0.001383 0.0144 

Entire FOV Image St.Dev. 0.000125 0.0082 

Entire FOV Threshold Value 0.001633 0.0309 

Yellow Box Surrounding Area 0.001278 0.0134 

Red Box Windshield 0.001178 0.0855 



 

 

 

 

Unlike shadows in the visible waveband, thermal shadows are a more persistent signature because they remain 

observable until the shadowed region returns to thermal equilibrium with its surroundings.  ROI's 1, 2, 5 and 6 in 
Figure 5, below, demonstrate thermal shadows at various stages of imbalance with the surrounding scene.  By 

comparison, because the DoLP data product is intensity-independent, thermal shadow signatures are mitigated, 
resulting in image contrast between surfaces with different textures.  The DoLP signature is highly influenced by 

surface roughness; in this instance the vehicle surface is much smoother than the surrounding pavement. Note 

that in the thermal image, none of vehicles are above the threshold value, whereas all three vehicles are well 

above the DoLP threshold value. 

  

 

Figure 5. Mitigation of thermal shadows using polarimetry illustrated in the visible reference image (left), 

standard thermal image (middle), and polarimetric image (right). 

 

Table 2. Quantitative measurements from Figure 5 ROI's 

Region of Interest # Description S0 (W/cm2/Sr) DoLP 

Entire FOV Image Mean 0.001659 0.0116 

Entire FOV Image St.Dev. 0.000081 0.0112 

Entire FOV Threshold Value 0.001821 0.0339 

1 Thermal Shadow 1 0.001580 0.0064 

2 Thermal Shadow 2 0.001649 0.0083 

3 Car 1 0.001775 0.0352 

4 Thermal Shadow 3 0.001675 0.0092 

5 Thermal Shadow 4 0.001566 0.0083 

6 Car 2 0.001714 0.0471 

7 Car 3 0.001780 0.0423 

8 Pavement 0.001747 0.0127 

 

 

Figure 6, below, shows a pedestrian walking across a roadway to a vehicle in shadow underneath a tree.  As 

with the previous figure, polarimetry demonstrates a robust capability at recovering contrast with objects in 

thermal equilibrium with its surroundings.  Furthermore, note that the pedestrian, the tree canopy, and the 

vehicle all have similar radiometric values (see Table 3).  However, the vehicle produces a much higher DoLP 

signature compared to the pedestrian and the tree canopy.  This is to be expected given polarimetry's propensity 

to detect man-made objects against natural backgrounds.  Furthermore, this data demonstrates polarimetry's 

ability to discriminate between vehicles and pedestrians. Note that even in shadow, the vehicle exceeds the 

DoLP threshold value, whereas the vehicle is well below the threshold value in the thermal image. 
 



 

 

 

Figure 6. Pedestrian and vehicle in shadow shown in the visible reference image (left), standard thermal 

image (middle), and polarimetric image (right). 

 

Table 3. Spatial average measurements from Figure 6 ROI's 

Region of Interest # Description S0 (W/cm2/Sr) DoLP 

Entire FOV Image Mean 0.001627 0.0089 

Entire FOV Image St.Dev. 0.000097 0.0039 

Entire FOV Threshold  Value 0.001821 0.0167 

1 Pavement (Direct Sun) 0.001781 0.0128 

2 Pavement (Shadowed) 0.001574 0.0069 

3 Pedestrian 0.001583 0.0060 

4 Tree Canopy 0.001525 0.0042 

5 Car in Shadow 0.001569 0.0198 

 
 

While the previous figures have dealt with overcoming shadowing effects, Figure 7 illustrates polarimetry's 

ability to reduce clutter in full-sun scenes.  Here, two vehicle are obscured by tree canopy (ROI's 2 and 4) and 

are at near thermal equilibrium with the surrounding pavement.  By comparison, the DoLP image is able to 

clearly distinguish the vehicles, roadway, and trees, thus reducing scene clutter. Note that the cars are just below 

the threshold value in the thermal image, but roughly twice the threshold value in the DoLP image.  As such, this 

data shows the robustness of the DoLP contrast enhancement regardless of whether or not the target is in shadow 

or direct sun. 

 

 

Figure 7. Detection of vehicles obscured by trees illustrated in the visible reference image (left), standard 

thermal image (middle), and polarimetric image (right).  

 

 



 

 

Table 4. Quantitative measurements from Figure 7 ROI's 

Region of Interest # Description S0 (W/cm2/Sr) DoLP 

Entire FOV Image Mean 0.001563 0.0075 

Entire FOV Image St.Dev. 0.000082 0.0056 

Entire FOV Threshold  Value 0.001727 0.0187 

1 Obscuring Tree 0.001512 0.0059 

2 Roadway 0.001690 0.0112 

3 Car 1 0.001707 0.0318 

4 Car 2 0.001645 0.0204 

 

 
As shown earlier, polarimetry's ability to recover image contrast is in part a function of the surface texture 

independent of the thermal intensity.  A complex scene is presented in Figure 8, containing a roadway, gravel, 

and train tracks, all of which have a shadow extending over the entire FOV.  As with the previous figures, the 

change in texture between these three surfaces results in a recovery of contrast in the DoLP image while 

simultaneously mitigating the shadow signature.  Furthermore, note that the polarimetric image also provides 

improved detection of the vehicles along the roadway. Note that the thresholding allows for separation of the 

roadway and the train tracks from the surround gravel (shadowed and direct sun) in the DoLP image, whereas 

only the gravel directly illuminated by the sun is above the threshold value for the thermal image. 

 

 

Figure 8. Shadow extended across train tracks and roadway shown in the visible reference image (left), 

standard thermal image (middle), and polarimetric image (right). 

 

Table 5. Quantitative measurements from Figure 8 ROI's 

Region of Interest # Description 

S0 

(W/cm2/Sr) DoLP 

Entire FOV Image Mean 0.001306 0.0048 

Entire FOV Image St.Dev. 0.000074 0.0221 

Entire FOV Threshold  Value 0.001454 0.0490 

1 Roadway (Direct Sun) 0.001451 0.0428 

2 Roadway (Shadowed) 0.001395 0.0443 

3 Gravel (Direct Sun) 0.001523 0.0139 

4 Gravel (Shadowed) 0.001387 0.0144 

5 Train Track 0.001329 0.1609 

6 Car (Top Left) 0.001328 0.1274 

 

 



 

 

Lastly, Figure 9 is presented as it is the most complex scene, containing an amalgamation of all examples 

discussed in the previous figures.  Here, a nighttime scene recorded at 10:45 pm results in low thermal contrast 

between trees, poles, and the surrounding pavement.  Furthermore, dark patches can be observed in the parking 

lot, some of which are persistent thermal shadows while others are cold sky-shine reflected off vehicle 

windshields in thermal equilibrium with the surrounding pavement.  The clutter of this scene is shown to be 

significantly reduced in the DoLP image; eliminating the thermal shadows, highlighting the highly polarized 
vehicles, and recovering contrast between the roadway and the trees (ROI's 1 and 2).   Note again that both 

vehcile are above the threshold value in the DoLP image where as neither  

 

 

 

Figure 9. Recovery of contrast in polarimetric image in low light conditions illustrated in the visible 

reference image (left), standard thermal image (middle), and polarimetric image (right). 

 

 

Table 6 Quantitative measurements from Figure 9 ROI's 

Region of Interest # Description S0 (W/cm2/Sr) DoLP 

Entire FOV Image Mean 0.001227 0.0214 

Entire FOV Image St.Dev. 0.000052 0.0079 

Entire FOV Threshold  Value 0.001331 0.0372 

1 Tree 0.001207 0.0211 

2 Roadway 0.001238 0.0307 

3 Pavement (Thermal Shadow) 0.001210 0.0252 

4 Pavement (No Shadow) 0.001295 0.0223 

5 Truck 1 0.001115 0.0516 

6 Truck 2 0.001107 0.0693 

 

 

5. COLOR QUEUING USING ETHERM 

 

In the previous section, thermal and polarimetric data was presented to aid the reader in making a side-by-side 

comparison between the two data products.  However, for man-in-the-loop applications, this is not necessarily 

practical. To ensure operator burden is minimized, a method is needed to easily impart thermal and polarimetric 

information into a single image.  Using a fusion algorithm developed by Polaris Sensor Technologies, 

polarimetric data can be used to colorize the thermal image.  In this way, the intensity information in the thermal 
image is preserved, while the polarization-based coloring aids the operator in interpreting low-contrast scenes.  

Using the same data presented in the previous section, this enhanced thermal image (referred to as the eTherm 

image) is presented side-by-side with the standard thermal image.  Note that only portions of the scene with a 

high degree of polarization are colorized whereas regions with low polarization automatically reduce to the same 



 

 

grayscale value present in the standard thermal image.  Most importantly, as polarization is dependent on the 

physics of the scene, the color scheme is necessarily consistent from frame to frame. 

 

 

 

Figure 10. Vehicles at thermal equilibrium in standard thermal (left) and colorized eTherm image (right) 

 

 

Figure 11. Pedestrian and vehicle shown standard thermal (left) and colorized eTherm image (right) 

 

 

Figure 12. Parking lot in standard thermal (left) and colorized eTherm image (right) 

 

 



 

 

 

Figure 13. Vehicles obscured by vegetation in standard thermal (left) and colorized eTherm image (right) 

 

 

 

Figure 14. Train tracks and road way with extended shadow shown in standard thermal (left) and 

colorized eTherm image (right) 

 
 

 

Figure 15. Low light cluttered scene shown in standard thermal (left) and colorized eTherm image (right) 

 

 



 

 

6. CONCLUSION 

 

 This paper demonstrates the performance of passive LWIR imaging polarimetry as a robust method for 

clutter reduction in complex scenes.  Use of a micro-bolometer based polarimeter demonstrates the applicability 

of this technology for use on unmanned systems due to the architecture's low SWaP-C.  Because it is a physics-

based detection scheme, infrared imaging polarimetry has been shown to be a robust approach for reducing scene 

clutter in IR imagery.  The use of modern machine vision algorithms is well suited to simultaneously utilize each 

of the multiple polarimetric parameters (S0, S1, S2, and DoLP), however the eTherm polarization-based coloring 

scheme has been shown to be ideal for man-in-the-loop applications. The results discussed in this paper may be 

achieved using any one of Polaris’ COTS infrared imaging polarimeters and the particular choice of one versus 
another is mainly driven by practical constraints such as SWaP-C.   
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